洞察分类网络激活热力图

Posted by TheMatrix on 2020-01-07

深度神经网络经常被当作“黑盒”,网络预测为什么是那样,很少有直观的解释,但是依靠CAM(Class Activation Mapping)可以可视化网络的最后一层激活值,对网络预测的类别区域进行热力图分析,看出网络到底学到了图片的那部分内容。

squeezenet预测

为了洞察网络预测分类到底“学习”到了什么,本示例通过USB摄像头实时采集图像,分析分类网络激活类别的热力图,越红的区域代表网络学习的特征越强,以squeezenet轻量级网络为例说明。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
net =squeezenet; % come from https://ww2.mathworks.cn/matlabcentral/fileexchange/?term=authorid%3A1211826
featureLayer = 'relu_conv10';
% analyzeNetwork(net)

%%
netInputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;

%% capture image
camera = webcam;
img = camera.snapshot();
H = size(img,1);
W = size(img,2);
h = vision.DeployableVideoPlayer;

showImage = zeros(H,2*W,3);
h(showImage)
while h.isOpen()
ori = camera.snapshot();
img = imresize(ori,netInputSize);
predictScores = predict(net,img);
[maxScores,indxs] = maxk(predictScores,3,2);%最大3个类别分数,沿着列的方向取最大值
predictLabel = classes(indxs);

features = activations(net,img,featureLayer);
extractFeaturesMap = features(:,:,indxs);
projectFeatures = postProcess(extractFeaturesMap,[H,W]);
projectFeatures(projectFeatures<0.2)=0;
normalizeImg = im2double(ori);
% imagesc('CData',projectFeatures,'AlphaData',0.5);
out = imtile(projectFeatures(:,:,1));
imshow(out);
strongestFeatureMap = uint8(projectFeatures(:,:,1)*255);% 把特征图的数值看作强度等级,值越大表示激活的区域越强,转换为uint8是为了对应到255个颜色等级图上
RGB = ind2rgb(strongestFeatureMap,jet(255));% RGB 范围为[0,1]内,double类型
combineImg = normalizeImg+RGB;
combineImg = mat2gray(combineImg);

showImage(:,1:W,:) = normalizeImg;
showImage(:,W+1:end,:) = combineImg;
showText = sprintf('%s %.2f\n%s %.2f\n%s %.2f',string(predictLabel(1)),maxScores(1),...
string(predictLabel(2)),maxScores(2),...
string(predictLabel(3)),maxScores(3));
showImage = insertText(showImage,[20,50],showText);
h(showImage);

end

function projectFeatures = postProcess(featureMaps,outPutSize)
% 把特征图h*w*c归一化到[0,1]范围,然后反投影到原图大小
% 输入:featureMaps为h*w*c大小矩阵
% outPutSize为1*2大小矩阵,表示[H,W]
% 输出:projectFeatures为H*W*c的[0,1]范围归一化反投影特征矩阵
channels = size(featureMaps,3);
for i = 1:channels
minv = min(featureMaps(:,:,i),[],'all');
maxv = max(featureMaps(:,:,i),[],'all');
featureMaps(:,:,i) = (featureMaps(:,:,i)-minv)./(maxv-minv);
end
projectFeatures = imresize(featureMaps,outPutSize,'bicubic');
end

fig5

Fig.预测热力图

googlenet预测

googlenet全连接层之前的卷积层卷积核个数并非1000,所以相较于squeezenet要进行适当变化,具体在于对每个特征通道进行一个“分数加权”,计算出适当的特征图,然后插值到原图大小即可。对于C++版的生成,改写一些不支持的操作,也比较容易达到独立运行此应用程序的目的。改后的代码文件命名为googlenet_predict_map_coder.m,其内容为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
function outImage = googlenet_predict_map_coder(image) %#codegen
% 用于代码生成的测试脚本程序,主要功能完成googlenet预测激活图实时显示,输入,image必须为固定大小
persistent mynet fc
if isempty(mynet)
mynet = coder.loadDeepLearningNetwork('googlenet');
fc = coder.load('fullyconvWB.mat');
end

% all classes
classes = {'tench'
'goldfish'
'great white shark'
'tiger shark'
'hammerhead'
'electric ray'
'stingray'
'cock'
'hen'
'ostrich'
'brambling'
'goldfinch'
'house finch'
'junco'
'indigo bunting'
'robin'
'bulbul'
'jay'
'magpie'
'chickadee'
'water ouzel'
'kite'
'bald eagle'
'vulture'
'great grey owl'
'European fire salamander'
'common newt'
'eft'
'spotted salamander'
'axolotl'
'bullfrog'
'tree frog'
'tailed frog'
'loggerhead'
'leatherback turtle'
'mud turtle'
'terrapin'
'box turtle'
'banded gecko'
'common iguana'
'American chameleon'
'whiptail'
'agama'
'frilled lizard'
'alligator lizard'
'Gila monster'
'green lizard'
'African chameleon'
'Komodo dragon'
'African crocodile'
'American alligator'
'triceratops'
'thunder snake'
'ringneck snake'
'hognose snake'
'green snake'
'king snake'
'garter snake'
'water snake'
'vine snake'
'night snake'
'boa constrictor'
'rock python'
'Indian cobra'
'green mamba'
'sea snake'
'horned viper'
'diamondback'
'sidewinder'
'trilobite'
'harvestman'
'scorpion'
'black and gold garden spider'
'barn spider'
'garden spider'
'black widow'
'tarantula'
'wolf spider'
'tick'
'centipede'
'black grouse'
'ptarmigan'
'ruffed grouse'
'prairie chicken'
'peacock'
'quail'
'partridge'
'African grey'
'macaw'
'sulphur-crested cockatoo'
'lorikeet'
'coucal'
'bee eater'
'hornbill'
'hummingbird'
'jacamar'
'toucan'
'drake'
'red-breasted merganser'
'goose'
'black swan'
'tusker'
'echidna'
'platypus'
'wallaby'
'koala'
'wombat'
'jellyfish'
'sea anemone'
'brain coral'
'flatworm'
'nematode'
'conch'
'snail'
'slug'
'sea slug'
'chiton'
'chambered nautilus'
'Dungeness crab'
'rock crab'
'fiddler crab'
'king crab'
'American lobster'
'spiny lobster'
'crayfish'
'hermit crab'
'isopod'
'white stork'
'black stork'
'spoonbill'
'flamingo'
'little blue heron'
'American egret'
'bittern'
'crane'
'limpkin'
'European gallinule'
'American coot'
'bustard'
'ruddy turnstone'
'red-backed sandpiper'
'redshank'
'dowitcher'
'oystercatcher'
'pelican'
'king penguin'
'albatross'
'grey whale'
'killer whale'
'dugong'
'sea lion'
'Chihuahua'
'Japanese spaniel'
'Maltese dog'
'Pekinese'
'Shih-Tzu'
'Blenheim spaniel'
'papillon'
'toy terrier'
'Rhodesian ridgeback'
'Afghan hound'
'basset'
'beagle'
'bloodhound'
'bluetick'
'black-and-tan coonhound'
'Walker hound'
'English foxhound'
'redbone'
'borzoi'
'Irish wolfhound'
'Italian greyhound'
'whippet'
'Ibizan hound'
'Norwegian elkhound'
'otterhound'
'Saluki'
'Scottish deerhound'
'Weimaraner'
'Staffordshire bullterrier'
'American Staffordshire terrier'
'Bedlington terrier'
'Border terrier'
'Kerry blue terrier'
'Irish terrier'
'Norfolk terrier'
'Norwich terrier'
'Yorkshire terrier'
'wire-haired fox terrier'
'Lakeland terrier'
'Sealyham terrier'
'Airedale'
'cairn'
'Australian terrier'
'Dandie Dinmont'
'Boston bull'
'miniature schnauzer'
'giant schnauzer'
'standard schnauzer'
'Scotch terrier'
'Tibetan terrier'
'silky terrier'
'soft-coated wheaten terrier'
'West Highland white terrier'
'Lhasa'
'flat-coated retriever'
'curly-coated retriever'
'golden retriever'
'Labrador retriever'
'Chesapeake Bay retriever'
'German short-haired pointer'
'vizsla'
'English setter'
'Irish setter'
'Gordon setter'
'Brittany spaniel'
'clumber'
'English springer'
'Welsh springer spaniel'
'cocker spaniel'
'Sussex spaniel'
'Irish water spaniel'
'kuvasz'
'schipperke'
'groenendael'
'malinois'
'briard'
'kelpie'
'komondor'
'Old English sheepdog'
'Shetland sheepdog'
'collie'
'Border collie'
'Bouvier des Flandres'
'Rottweiler'
'German shepherd'
'Doberman'
'miniature pinscher'
'Greater Swiss Mountain dog'
'Bernese mountain dog'
'Appenzeller'
'EntleBucher'
'boxer'
'bull mastiff'
'Tibetan mastiff'
'French bulldog'
'Great Dane'
'Saint Bernard'
'Eskimo dog'
'malamute'
'Siberian husky'
'dalmatian'
'affenpinscher'
'basenji'
'pug'
'Leonberg'
'Newfoundland'
'Great Pyrenees'
'Samoyed'
'Pomeranian'
'chow'
'keeshond'
'Brabancon griffon'
'Pembroke'
'Cardigan'
'toy poodle'
'miniature poodle'
'standard poodle'
'Mexican hairless'
'timber wolf'
'white wolf'
'red wolf'
'coyote'
'dingo'
'dhole'
'African hunting dog'
'hyena'
'red fox'
'kit fox'
'Arctic fox'
'grey fox'
'tabby'
'tiger cat'
'Persian cat'
'Siamese cat'
'Egyptian cat'
'cougar'
'lynx'
'leopard'
'snow leopard'
'jaguar'
'lion'
'tiger'
'cheetah'
'brown bear'
'American black bear'
'ice bear'
'sloth bear'
'mongoose'
'meerkat'
'tiger beetle'
'ladybug'
'ground beetle'
'long-horned beetle'
'leaf beetle'
'dung beetle'
'rhinoceros beetle'
'weevil'
'fly'
'bee'
'ant'
'grasshopper'
'cricket'
'walking stick'
'cockroach'
'mantis'
'cicada'
'leafhopper'
'lacewing'
'dragonfly'
'damselfly'
'admiral'
'ringlet'
'monarch'
'cabbage butterfly'
'sulphur butterfly'
'lycaenid'
'starfish'
'sea urchin'
'sea cucumber'
'wood rabbit'
'hare'
'Angora'
'hamster'
'porcupine'
'fox squirrel'
'marmot'
'beaver'
'guinea pig'
'sorrel'
'zebra'
'hog'
'wild boar'
'warthog'
'hippopotamus'
'ox'
'water buffalo'
'bison'
'ram'
'bighorn'
'ibex'
'hartebeest'
'impala'
'gazelle'
'Arabian camel'
'llama'
'weasel'
'mink'
'polecat'
'black-footed ferret'
'otter'
'skunk'
'badger'
'armadillo'
'three-toed sloth'
'orangutan'
'gorilla'
'chimpanzee'
'gibbon'
'siamang'
'guenon'
'patas'
'baboon'
'macaque'
'langur'
'colobus'
'proboscis monkey'
'marmoset'
'capuchin'
'howler monkey'
'titi'
'spider monkey'
'squirrel monkey'
'Madagascar cat'
'indri'
'Indian elephant'
'African elephant'
'lesser panda'
'giant panda'
'barracouta'
'eel'
'coho'
'rock beauty'
'anemone fish'
'sturgeon'
'gar'
'lionfish'
'puffer'
'abacus'
'abaya'
'academic gown'
'accordion'
'acoustic guitar'
'aircraft carrier'
'airliner'
'airship'
'altar'
'ambulance'
'amphibian'
'analog clock'
'apiary'
'apron'
'ashcan'
'assault rifle'
'backpack'
'bakery'
'balance beam'
'balloon'
'ballpoint'
'Band Aid'
'banjo'
'bannister'
'barbell'
'barber chair'
'barbershop'
'barn'
'barometer'
'barrel'
'barrow'
'baseball'
'basketball'
'bassinet'
'bassoon'
'bathing cap'
'bath towel'
'bathtub'
'beach wagon'
'beacon'
'beaker'
'bearskin'
'beer bottle'
'beer glass'
'bell cote'
'bib'
'bicycle-built-for-two'
'bikini'
'binder'
'binoculars'
'birdhouse'
'boathouse'
'bobsled'
'bolo tie'
'bonnet'
'bookcase'
'bookshop'
'bottlecap'
'bow'
'bow tie'
'brass'
'brassiere'
'breakwater'
'breastplate'
'broom'
'bucket'
'buckle'
'bulletproof vest'
'bullet train'
'butcher shop'
'cab'
'caldron'
'candle'
'cannon'
'canoe'
'can opener'
'cardigan'
'car mirror'
'carousel'
'carpenters kit'
'carton'
'car wheel'
'cash machine'
'cassette'
'cassette player'
'castle'
'catamaran'
'CD player'
'cello'
'cellular telephone'
'chain'
'chainlink fence'
'chain mail'
'chain saw'
'chest'
'chiffonier'
'chime'
'china cabinet'
'Christmas stocking'
'church'
'cinema'
'cleaver'
'cliff dwelling'
'cloak'
'clog'
'cocktail shaker'
'coffee mug'
'coffeepot'
'coil'
'combination lock'
'computer keyboard'
'confectionery'
'container ship'
'convertible'
'corkscrew'
'cornet'
'cowboy boot'
'cowboy hat'
'cradle'
'crane (machine)'
'crash helmet'
'crate'
'crib'
'Crock Pot'
'croquet ball'
'crutch'
'cuirass'
'dam'
'desk'
'desktop computer'
'dial telephone'
'diaper'
'digital clock'
'digital watch'
'dining table'
'dishrag'
'dishwasher'
'disk brake'
'dock'
'dogsled'
'dome'
'doormat'
'drilling platform'
'drum'
'drumstick'
'dumbbell'
'Dutch oven'
'electric fan'
'electric guitar'
'electric locomotive'
'entertainment center'
'envelope'
'espresso maker'
'face powder'
'feather boa'
'file'
'fireboat'
'fire engine'
'fire screen'
'flagpole'
'flute'
'folding chair'
'football helmet'
'forklift'
'fountain'
'fountain pen'
'four-poster'
'freight car'
'French horn'
'frying pan'
'fur coat'
'garbage truck'
'gasmask'
'gas pump'
'goblet'
'go-kart'
'golf ball'
'golfcart'
'gondola'
'gong'
'gown'
'grand piano'
'greenhouse'
'grille'
'grocery store'
'guillotine'
'hair slide'
'hair spray'
'half track'
'hammer'
'hamper'
'hand blower'
'hand-held computer'
'handkerchief'
'hard disc'
'harmonica'
'harp'
'harvester'
'hatchet'
'holster'
'home theater'
'honeycomb'
'hook'
'hoopskirt'
'horizontal bar'
'horse cart'
'hourglass'
'iPod'
'iron'
'jack antern'
'jean'
'jeep'
'jersey'
'jigsaw puzzle'
'jinrikisha'
'joystick'
'kimono'
'knee pad'
'knot'
'lab coat'
'ladle'
'lampshade'
'laptop'
'lawn mower'
'lens cap'
'letter opener'
'library'
'lifeboat'
'lighter'
'limousine'
'liner'
'lipstick'
'Loafer'
'lotion'
'loudspeaker'
'loupe'
'lumbermill'
'magnetic compass'
'mailbag'
'mailbox'
'maillot'
'maillot, tank suit'
'manhole cover'
'maraca'
'marimba'
'mask'
'matchstick'
'maypole'
'maze'
'measuring cup'
'medicine chest'
'megalith'
'microphone'
'microwave'
'military uniform'
'milk can'
'minibus'
'miniskirt'
'minivan'
'missile'
'mitten'
'mixing bowl'
'mobile home'
'Model T'
'modem'
'monastery'
'monitor'
'moped'
'mortar'
'mortarboard'
'mosque'
'mosquito net'
'motor scooter'
'mountain bike'
'mountain tent'
'mouse'
'mousetrap'
'moving van'
'muzzle'
'nail'
'neck brace'
'necklace'
'nipple'
'notebook'
'obelisk'
'oboe'
'ocarina'
'odometer'
'oil filter'
'organ'
'oscilloscope'
'overskirt'
'oxcart'
'oxygen mask'
'packet'
'paddle'
'paddlewheel'
'padlock'
'paintbrush'
'pajama'
'palace'
'panpipe'
'paper towel'
'parachute'
'parallel bars'
'park bench'
'parking meter'
'passenger car'
'patio'
'pay-phone'
'pedestal'
'pencil box'
'pencil sharpener'
'perfume'
'Petri dish'
'photocopier'
'pick'
'pickelhaube'
'picket fence'
'pickup'
'pier'
'piggy bank'
'pill bottle'
'pillow'
'ping-pong ball'
'pinwheel'
'pirate'
'pitcher'
'plane'
'planetarium'
'plastic bag'
'plate rack'
'plow'
'plunger'
'Polaroid camera'
'pole'
'police van'
'poncho'
'pool table'
'pop bottle'
'pot'
'potter wheel'
'power drill'
'prayer rug'
'printer'
'prison'
'projectile'
'projector'
'puck'
'punching bag'
'purse'
'quill'
'quilt'
'racer'
'racket'
'radiator'
'radio'
'radio telescope'
'rain barrel'
'recreational vehicle'
'reel'
'reflex camera'
'refrigerator'
'remote control'
'restaurant'
'revolver'
'rifle'
'rocking chair'
'rotisserie'
'rubber eraser'
'rugby ball'
'rule'
'running shoe'
'safe'
'safety pin'
'saltshaker'
'sandal'
'sarong'
'sax'
'scabbard'
'scale'
'school bus'
'schooner'
'scoreboard'
'screen'
'screw'
'screwdriver'
'seat belt'
'sewing machine'
'shield'
'shoe shop'
'shoji'
'shopping basket'
'shopping cart'
'shovel'
'shower cap'
'shower curtain'
'ski'
'ski mask'
'sleeping bag'
'slide rule'
'sliding door'
'slot'
'snorkel'
'snowmobile'
'snowplow'
'soap dispenser'
'soccer ball'
'sock'
'solar dish'
'sombrero'
'soup bowl'
'space bar'
'space heater'
'space shuttle'
'spatula'
'speedboat'
'spider web'
'spindle'
'sports car'
'spotlight'
'stage'
'steam locomotive'
'steel arch bridge'
'steel drum'
'stethoscope'
'stole'
'stone wall'
'stopwatch'
'stove'
'strainer'
'streetcar'
'stretcher'
'studio couch'
'stupa'
'submarine'
'suit'
'sundial'
'sunglass'
'sunglasses'
'sunscreen'
'suspension bridge'
'swab'
'sweatshirt'
'swimming trunks'
'swing'
'switch'
'syringe'
'table lamp'
'tank'
'tape player'
'teapot'
'teddy'
'television'
'tennis ball'
'thatch'
'theater curtain'
'thimble'
'thresher'
'throne'
'tile roof'
'toaster'
'tobacco shop'
'toilet seat'
'torch'
'totem pole'
'tow truck'
'toyshop'
'tractor'
'trailer truck'
'tray'
'trench coat'
'tricycle'
'trimaran'
'tripod'
'triumphal arch'
'trolleybus'
'trombone'
'tub'
'turnstile'
'typewriter keyboard'
'umbrella'
'unicycle'
'upright'
'vacuum'
'vase'
'vault'
'velvet'
'vending machine'
'vestment'
'viaduct'
'violin'
'volleyball'
'waffle iron'
'wall clock'
'wallet'
'wardrobe'
'warplane'
'washbasin'
'washer'
'water bottle'
'water jug'
'water tower'
'whiskey jug'
'whistle'
'wig'
'window screen'
'window shade'
'Windsor tie'
'wine bottle'
'wing'
'wok'
'wooden spoon'
'wool'
'worm fence'
'wreck'
'yawl'
'yurt'
'web site'
'comic book'
'crossword puzzle'
'street sign'
'traffic light'
'book jacket'
'menu'
'plate'
'guacamole'
'consomme'
'hot pot'
'trifle'
'ice cream'
'ice lolly'
'French loaf'
'bagel'
'pretzel'
'cheeseburger'
'hotdog'
'mashed potato'
'head cabbage'
'broccoli'
'cauliflower'
'zucchini'
'spaghetti squash'
'acorn squash'
'butternut squash'
'cucumber'
'artichoke'
'bell pepper'
'cardoon'
'mushroom'
'Granny Smith'
'strawberry'
'orange'
'lemon'
'fig'
'pineapple'
'banana'
'jackfruit'
'custard apple'
'pomegranate'
'hay'
'carbonara'
'chocolate sauce'
'dough'
'meat loaf'
'pizza'
'potpie'
'burrito'
'red wine'
'espresso'
'cup'
'eggnog'
'alp'
'bubble'
'cliff'
'coral reef'
'geyser'
'lakeside'
'promontory'
'sandbar'
'seashore'
'valley'
'volcano'
'ballplayer'
'groom'
'scuba diver'
'rapeseed'
'daisy'
'yellow lady slipper'
'corn'
'acorn'
'hip'
'buckeye'
'coral fungus'
'agaric'
'gyromitra'
'stinkhorn'
'earthstar'
'hen-of-the-woods'
'bolete'
'ear'
'toilet tissue'}; %mynet.Layers(end).Classes;
netInputSize = [224,224]; %mynet.Layers(1).InputSize(1:2);
H = 480;W = 640;
RGB = zeros(H,W,3);

image = imresize(image,[H,W]);
showImage = zeros(H,2*W,3);

% pass in input
ori = image;
featureLayer = 'inception_5b-output';
img = imresize(ori,netInputSize);
predictScores = predict(mynet,img);
[maxScores,indxs] = maxk(predictScores,3,2);%最大3个类别分数,沿着列的方向取最大值
predictLabel = cell(length(indxs),1);
for id = 1:length(indxs)
ind = indxs(id);
predictLabel{id} = classes{ind};
end

features = activations(mynet,img,featureLayer);
scores = squeeze(mean(features,[1,2]));

fcWeights = fc.fcWeights; % mynet.Layers(end-2).Weights;
fcBias = fc.fcBias; % mynet.Layers(end-2).Bias;
scores = fcWeights*scores + fcBias;

[~,classIds] = maxk(scores,3);
fcdim=size(features,3);
weightVector = reshape(fcWeights(classIds(1),:),1,1,fcdim);
weightMatrix = zeros(size(features),'like',features);
for i = 1:fcdim
weightMatrix(:,:,i) = repmat(weightVector(:,:,i),size(features,1),size(features,2));
end

classActivationMap = sum(features.*weightMatrix,3);
classActivationMap = rescale(classActivationMap);
projectFeatures = imresize(classActivationMap,[H,W],'bicubic');
projectFeatures(projectFeatures<0.2)=0;

strongestFeatureMap = uint8(projectFeatures*255);% 把特征图的数值看作强度等级,值越大表示激活的区域越强,转换为uint8是为了对应到255个颜色等级图上
RGB = ind2rgb(strongestFeatureMap,fc.jetColormap);% RGB 范围为[0,1]内,double类型
normalizeImg = im2double(ori);
combineImg = normalizeImg+RGB;
combineImg = rescale(combineImg); % [0,1]范围

showImage(:,1:W,:) = normalizeImg;
showImage(:,W+1:end,:) = combineImg;
showText = sprintf('%s %.2f\n%s %.2f\n%s %.2f',predictLabel{1},maxScores(1),...
predictLabel{2},maxScores(2),...
predictLabel{3},maxScores(3));
showImage = insertText(showImage,[20,50],showText);
outImage = showImage;

生成独立的库文件,配置生成代码:

1
2
3
4
5
cfg = coder.gpuConfig('dll');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.DeepLearningConfig.DataType = 'fp32';
codegen -args {ones(480,640,3,'uint8')} -config cfg googlenet_predict_map_coder;

稍等片刻,即可生成一些源文件和库文件

fig5

Fig.C++源代码

独立的C++代码嵌入到应用程序

上面生成的源代码文件较多,但用到有效的比较少,仅需模型二进制权重文件和一些C++头文件,静态库lib,动态库dll即可,其他中间文件忽略。在C++中写好传入函数输入输出接口即可,下面C++代码是opencv与生成的代码融合的一种方式,也是比较容易实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
//
// File: main.cu
//
// GPU Coder version : 1.5
// CUDA/C/C++ source code generated on : 31-May-2020 17:32:07
//

//***********************************************************************
// This automatically generated example CUDA main file shows how to call
// entry-point functions that MATLAB Coder generated. You must customize
// this file for your application. Do not modify this file directly.
// Instead, make a copy of this file, modify it, and integrate it into
// your development environment.
//
// This file initializes entry-point function arguments to a default
// size and value before calling the entry-point functions. It does
// not store or use any values returned from the entry-point functions.
// If necessary, it does pre-allocate memory for returned values.
// You can use this file as a starting point for a main function that
// you can deploy in your application.
//
// After you copy the file, and before you deploy it, you must make the
// following changes:
// * For variable-size function arguments, change the example sizes to
// the sizes that your application requires.
// * Change the example values of function arguments to the values that
// your application requires.
// * If the entry-point functions return values, store these values or
// otherwise use them as required by your application.
//
//***********************************************************************

#include <iostream>
#include <fstream>
#include <string>
#include"opencv2/opencv.hpp"

// Include Files
#include "DeepLearningNetwork.h"
#include "googlenet_predict_map_coder.h"
#include "googlenet_predict_map_coder_terminate.h"
#include "rt_nonfinite.h"

// Function Declarations
static void argInit_480x640x3_uint8_T(cv::Mat&image, char result[921600]);
static unsigned char argInit_uint8_T();
static void main_googlenet_predict_map_coder();

// Function Definitions

// Arguments : unsigned char result[921600]
// Return Type : void
//
static void argInit_480x640x3_uint8_T(cv::Mat&image, unsigned char result[921600])
{
if (image.size() != cv::Size(640, 480))
{
cv::resize(image, image, cv::Size(640, 480));
}

// Loop over the array to initialize each element.
for (int idx0 = 0; idx0 < 480; idx0++) {
unsigned char* data = image.ptr<unsigned char>(idx0);
for (int idx1 = 0; idx1 < 640; idx1++) {
for (int idx2 = 0; idx2 < 3; idx2++) {
// Set the value of the array element.
// Change this value to the value that the application requires.
result[(idx0 + 480 * idx1) + 307200 * idx2] = data[idx2];
}
data += 3;
}
}
}

//
// Arguments : void
// Return Type : unsigned char
//
static unsigned char argInit_uint8_T()
{
return 0U;
}

//
// Arguments : void
// Return Type : void
//
static void main_googlenet_predict_map_coder()
{
static double outImage[1843200];
static unsigned char b[921600];

// Initialize function 'googlenet_predict_map_coder' input arguments.
// Initialize function input argument 'image'.
// Call the entry-point 'googlenet_predict_map_coder'.
cv::VideoCapture cap(0);
cv::Mat ori, image;
if (!cap.read(ori))
{
std::cerr << "can't open camera!" << std::endl;
}
while (cap.read(ori))
{
if (ori.empty())
{
std::cerr << "can't read image!" << std::endl;
}
image = ori.clone();
cv::Mat ori2 = ori.clone();

//GPU coder代码,不占用CPU,但占用很少一部分GPU,耗时6ms左右
double t1 = cv::getTickCount();
argInit_480x640x3_uint8_T(image, b);
googlenet_predict_map_coder(b, outImage);
double t2 = cv::getTickCount();
printf("googlenet_predict take time:%.2f ms\n", (t2 - t1) / cv::getTickFrequency() * 1000);

//outImage 转换为Opencv Mat
cv::Mat outCVImage = cv::Mat( 480, 2 * 640, CV_64FC3,cv::Scalar(0,0,0));
for (int i = 0; i < outCVImage.rows; i++)
{
cv::Vec3d* data = outCVImage.ptr<cv::Vec3d>(i);
for (int j = 0; j < outCVImage.cols; j++)
{
for (int m = 0; m < outCVImage.channels(); m++)
{
data[j][m] = outImage[(i + 480 * j) + 480*640*2 * m];
}
}
}

cv::Mat dst;
outCVImage.convertTo(dst, CV_32FC3, 1.0);
cv::imshow("outCVImage", dst);
int key = cv::waitKey(1);
if (key == 27)
{
break;
}
if (key == ' ')
{
cv::waitKey();
}

}
}

//
// Arguments : int argc
// const char * const argv[]
// Return Type : int
//
int main(int, const char * const[])
{
// The initialize function is being called automatically from your entry-point function. So, a call to initialize is not included here.
// Invoke the entry-point functions.
// You can call entry-point functions multiple times.
main_googlenet_predict_map_coder();

// Terminate the application.
// You do not need to do this more than one time.
googlenet_predict_map_coder_terminate();
return 0;
}

//
// File trailer for main.cu
//
// [EOF]
//

fig5

Fig.嵌入到独立应用的预测热力图